专利摘要:
A docking unit for a portable computer has a wedge-shaped. As a result, a portable computer, which has been installed on the docking unit, is inclined toward the user. This places the keyboard of the portable computer at a more comfortable angle for typing. Thus, the portable computer's keyboard remains usable even when it is installed on the docking unit. Moreover, the wedge-shape need not substantially raise the height of the keyboards since the leading edge is relatively thin, keeping the computer's keyboard as a comfortable height.
公开号:US20010005307A1
申请号:US09/138,319
申请日:1998-08-21
公开日:2001-06-28
发明作者:Michele Bovie;Allan Scott Baucon
申请人:Compaq Information Technologies Group LP;
IPC主号:G06F1-1632
专利说明:
[0001] Portable computer docking units have been marketed as devices that allow the user to have the advantages of a portable computer without any of the portable computer's limitations, at least when operating at the user's desk or other primary work location. [0001]
[0002] In the typical implementation, the docking unit is located at the user's office. The docking unit has a docking bay for receiving and providing electrical connections to the portable computer. The docking unit may also have a bus extension that electrically mates with the portable computer's bus when it is in the docking bay and a number of expansion slots to hold hard drives, CD-ROMs, modems etc., which are not found in the portable computer. As a result, when the portable computer is installed in the docking unit, its minimalist portable computer capabilities are augmented and extended to those that are typically found in most desktop or non-portable computer systems. In this way, the user has the advantages associated with the portable computer while not losing the functionality that would otherwise be available from a desktop computer system. [0002]
[0003] Most docking units also have port replication functionality. Many times the portable computer will be outfitted with a variety of communication ports, including serial ports, parallel ports, universal serial bus ports (USB), video ports, RJ45 network ports, etc. These ports are accessed through port connectors, usually on the back of the computer. It is typical for the docking unit to have a similar array of port connectors so that when the portable computer is connected to the docking unit, the portable computer's communication ports are tied to the analogous port connectors in the docking unit. In the parlance of the industry, the portable computer's communication ports are replicated in the docking unit. The advantage of this system is that the user can connect such components as a network interface, full size keyboard, mouse, and full size monitor to the port connectors of the docking unit. The docked portable computer thus connects to these various devices, but the mere act of undocking the portable computer serves to disconnect the computer from these various devices, in one step. [0003]
[0004] Some docking units are intended primarily as port replicators. These devices will not have the bus extensions, and consequently, the expansion slots, to support additional active bus devices for the portable computer. Instead, they are primarily intended to perform the port replication function. While obviously not having all of the advantages associated with the more elaborate docking units, port replicators provide the user with many of the core advantages of a desktop docking unit, such as the possibility of using a full size keyboard and desktop monitor and offering these features at a reasonable price point in a system with a small footprint. [0004] SUMMARY OF THE INVENTION
[0005] One of the main disadvantages associated with docking units is that they effectively require the user to connect a full size keyboard to the docking unit. Some docking units prevent access to the portable computer's keyboard, when installed on the dock, and among the class of units that do allow access the portable's keyboard, the docking unit will have some thickness such that when the portable computer is connected onto it, the portable computer's keyboard is raised to the height at which it is uncomfortable for typing, when many desktops are already uncomfortably high for proper typing posture. In many ways, however, this is unfortunate because the newer keyboards offered by portable computers are otherwise very useful such that full size separate keyboards offer few incremental advantages. Moreover, even if the docking unit is relatively thin, it will not be at the proper typing angle. Many portable computers have folding legs under the rear portion of the portable computer's base. This allows the user to incline the keyboard for a more comfortable typing angle. Typically, however, installation of the portable computer in the docking bay of the docking unit necessitates the folding of these legs. Thus, even if the keyboard of the portable computer, when installed on the docking unit, can be located at the proper height, its angle will be uncomfortable for the user. [0005]
[0006] The present invention is directed to a docking unit for a portable computer. According to the invention, it is wedge-shaped. As a result, a portable computer, which has been installed on the docking unit, is inclined toward the user. This places the keyboard of the portable computer at a more comfortable angle for typing. Thus, the portable computer's keyboard remains usable even when it is installed on the docking unit. Moreover, the wedge-shape need not substantially raise the height of the keyboard since the leading edge is relatively thin. [0006]
[0007] In the preferred embodiment, the docking unit is a port replicator. As such, it replicates communication ports of the portable computer, enabling the portable computer to be disconnected from peripheral devices on the replicator's ports by disconnecting the portable computer from the docking unit. Specifically, the docking unit replicates parallel ports, serial ports, USB ports, keyboard ports, network ports, and video ports of the portable computer as corresponding replicated ports on the docking unit. The communication ports of the portable computer are connected to the replicated port connectors of the docking unit via a combination connector. Preferably, the combination connector of the docking unit mates with a compatible connector on the portable computer as the portable computer is installed in the docking bay of the docking unit. [0007]
[0008] In the preferred implementation, the docking unit comprises a wall that projects in front of the communication port connectors of the portable computer when the computer is installed on the docking unit. This prevents access to the portable computer's port connectors by the user, thereby requiring the user to use the replicated port connectors of the docking unit and preventing incompatible electrical connections to both port connectors simultaneously. [0008]
[0009] In general, according to another aspect, the invention also features a method for docking a portable computer. This method comprises providing a docking unit with a wedge cross-section. Consequently, installation of the portable computer on the docking unit's docking bay inclines a keyboard of the portable computer towards the user to thereby provide a more comfortable angle for typing. [0009]
[0010] The above and other features of the invention including various novel details of construction and combinations of parts, and other advantages, will now be more particularly described with reference to the accompanying drawings and pointed out in the claims. It will be understood that the particular method and device embodying the invention are shown by way of illustration and not as a limitation of the invention. The principles and features of this invention may be employed in various and numerous embodiments without departing from the scope of the invention. [0010] BRIEF DESCRIPTION OF THE DRAWINGS
[0011] In the accompanying drawings, reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale; emphasis has instead been placed upon illustrating the principles of the invention. Of the drawings: [0011]
[0012] FIG. 1 is a perspective view showing the rear portion of a port replicator, according to the present invention; [0012]
[0013] FIG. 1A is a perspective view detailing the technique used to connect the front of the computer system with the port replicator; [0013]
[0014] FIG. 2 is a perspective, top view of the port replicator showing the insertion of a battery into the charging cradle according to the invention; [0014]
[0015] FIG. 3 is another, top perspective view of the port replicator with the battery fully inserted into the cradle according to the invention; [0015]
[0016] FIG. 4 shows a portable computer being connected into the port replicator of the present invention according to the invention; [0016]
[0017] FIG. 5 shows the inventive port replicator with the portable computer installed in its docking bay; [0017]
[0018] FIG. 6 is a schematic plan view showing the docking latch release system according to the present invention; and [0018]
[0019] FIG. 7 is a circuit diagram showing the electronic control of the latching system of the present invention. [0019] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0020] FIG. 1 shows a port replicator docking unit, which has been constructed according to the principles of the present invention. [0020]
[0021] Generally, the port replicator [0021] 100 comprises a computer docking bay 110, which is configured to receive a compatible portable computer on the port replicator 100. To this end, the right and left tabs 112, 114 are provided on a front wall 111 of the docking unit 100. The tabs 112, 114 project rearward from the front wall 111 and are located over wells 116, 118.
[0022] As detailed in FIG. 1A, tabs [0022] 112, 114 mate with rectangular recesses on the front of a compatible portable computer 10, allowing the front of the portable computer to be physically connected into the docking unit. Specifically, the portable computer 10 is aligned in the computer docking bay area 110 so that the rectangular recesses 12 in the portable computer's housing are aligned in front of each of the projecting tabs 112, 114. The computer is then moved in the direction of arrow 14 so that the tabs 112, 114 engage the recesses 12. This connection has the effect of hinging the front of the computer 10 to the port replicator 100.
[0023] Returning to FIG. 1, in the central section of the docking unit [0023] 100, a cutout 120 is formed. In the preferred embodiment, this extends entirely through the docking unit. This has the advantage of providing an easy means for carrying the docking unit, forming an improvised handle. Rearward of the cutout 120 is battery charging cradle 122.
[0024] Better shown in FIG. 2, the cradle [0024] 122 is sized and adapted to receive battery 124. When inserted into the cradle, the battery's electrodes 126 electrically mate with the charging connector 127 in the charging cradle 122.
[0025] FIG. 3 shows the battery [0025] 124 installed in the charging cradle. Preferably, the top wall 125 of the battery 124 is flush or level with a bay wall 129 of the docking unit 100. A battery charging unit 128 is located in an electronics section 127 under bay wall 129 of the docking unit 100. In the preferred embodiment, the battery is a lithium ion battery and the charger 128 is adapted to provide the charging profile required for lithium ion batteries.
[0026] Behind the battery charging cradle [0026] 122 on the top bay wall 129 of the docking unit 100 is a combination connector 130.
[0027] As shown in FIG. 4, installing the portable computer [0027] 10 onto the docking unit is accomplished by engaging the tabs 112, 114 with the rectangular recesses 12 to provide the hinging action at the point of connection between the computer 10 and the front of the docking unit 100. As the rear portion of the computer 10 descends into the docking bay 110, the docking unit's combination connector 130 electrically mates with the compatible connector 14 on the bottom of the portable computer 10. This allows the portable computer's communication ports to be replicated at the communication port connectors 131 on the port replicator 100. Also, the combination connector 130 provides electrical power to the portable computer 10.
[0028] The rear of the docking unit [0028] 100 has the array of communication port connectors or jacks 131. Preferably, these connectors comprise an RJ-45 connector 142 for connection to a network, a USB connector 144, a power supply connector 146, a parallel printer port connector 148, a serial port connector 150, a VGA video port connector 149, mouse port connector 152, and a keyboard port connector 154. These replicated port connectors 140 function as the replicated port connectors of the portable computer installed in the docking bay area. The ports of the portable computer connect to the replicated port connectors via the combination connector 130.
[0029] In the preferred embodiment, the docking unit [0029] 100 comprises a rear wall 182 that projects upward, over the docking bay 110 at the rear side of the unit 100. This projecting wall 182 is preferably arcuate and projects in front of the communication port connectors 18 of the portable computer. This effectively prevents the simultaneous connection of devices to the portable computer's communication port connectors and the same connectors of the docking unit, preventing incompatible electrical connection. The set of communication port connectors 18 of the portable computer include a parallel printer port connector 45, a serial port connector 46, and a VGA video port connector 47. These connectors 18 are accessed during mobile operation by opening the door 20. However, as the portable computer 10 is inserted into the docking bay 110 of the docking unit 100, projecting wall 182 engages the door 20, if it is in the open position. This forces the door 20 closed as the portable computer 10 is completely seated into the docking bay 110. It thus prevents access to the communication port connectors 18 of the portable computer 10, requiring these connections to be made from the replicated port connectors 131 of the docking unit 100.
[0030] The final docked state is shown in FIG. 5, when the computer [0030] 10 is installed on the docking unit 100, the projecting wall 182 holds the door 20 closed, preventing access to the portable computer's communication port connectors.
[0031] According to the invention, the docking unit [0031] 100 has a wedge lateral cross-section. As shown, when the portable computer 10 is installed on the docking unit, the docking unit's wedge shape inclines the portable computer's keyboard 180 and pointing device 182 towards the user at an angle of between 7° and 13°, preferably 10°. This provides a more comfortable typing angle for the user, allowing the use of the portable computer's keyboard when the portable computer is connected into the docking unit 100 without necessitating an extra, desktop-version keyboard.
[0032] As best shown in FIG. 4, docking unit [0032] 100 and portable computer 10 have a system for securing the computer to the unit. The docking unit has two latching elements 132, 134 in the docking bay 110. They allow the portable computer 10 to be latched on docking unit.
[0033] In more detail, lowering the portable computer [0033] 10 onto the docking bay causes the bottom wall of the portable computer, surrounding the right and left latching holes 22, 24 to engage latch release buttons 168, 170. This causes the latching elements 132, 134 shown in their retracted position in FIG. 4, to extend upward and toward the rear of the docking unit 100. The latching elements 132, 134 thus extend into the right and left latching holes 22, 24 of the portable computer 10 to securely hold the rear of the portable computer 10 against the docking unit 100 in the docking bay 110. This in combination with the engagement of the tabs 112, 114 at the front of the portable computer, retain the portable computer 10 securely in the docking bay 110.
[0034] The latching system forms part of a security system for the portable computer. The latching elements [0034] 132, 134 prevent the portable computer 10 from being removed from the docking unit 100, and the docking unit is, in turn, secured at a work area via a locking cable arrangement that engages locking port 184. In one example, a Kensington (trade name) cable system is used that engages the port 184 to lock and secure the docking unit 100 to a workstation via a cable 221 shown schematically.
[0035] The right and left latching elements [0035] 132, 134 release the computer 10 and are returned to the retracted position by depressing right and left latch release buttons 136, 138, respectively. In the preferred embodiment, the latch release buttons 136, 138 in combination with an undock request button 184 prevent removal of the portable computer 10 when it is docked to the docking unit 100 by unauthorized persons.
[0036] FIG. 6 is a schematic plan view showing the latch control system that operates the latching elements, which is located in the electronic section [0036] 127 of the docking unit 100, according to the present invention. The right and left latch release buttons 136, 138 each comprise elongate, metal rods 302, 304, respectively. Additionally, the body portion of the buttons 136, 138 each have camming surfaces 306, 308. When each of the latch release buttons 136, 138 is depressed, the camming surfaces 306 and 308 engage arm portions 310, 312 of the latching elements 132, 134. This causes the latching elements 132, 134 to be retracted, and thereby release the computer 10 from the docking unit 100.
[0037] In order to provide security, the depression of the latch release buttons [0037] 136, 138 is prevented in software. Specifically, each of the metal arms 302, 304 extends to a spring loaded locking element 314. Specifically, spring 316 biases the locking element 314 in the direction of arrow 318 against wall 320.
[0038] In an unlocked state, depression of of the latch release buttons [0038] 136, 138 causes the pointed, distal ends of the metal rods 304, 308 to engage the inclined surfaces 322, 324 of the locking element 314. The locking element 314 is free to rotate counter to arrow 318 to accommodate the movement of each of the rods in the direction of arrows 326.
[0039] In the locked state, however, an arm [0039] 330 of solenoid 332 is extended as shown in FIG. 6. This prevents the rotation of the locking element 314 counter to the direction of arrow 318 and thus in turn prevents the movement of the rods 302, 304 in the direction of arrows 326. By stopping the depression of buttons 136, 138, the retraction of the latching elements 132, 134 is prevented, thereby retaining the portable computer on the docking unit 100. The state of the solenoid arm 330 is sensed by switch 336.
[0040] FIG. 7 shows a latch control system for operating the solenoid [0040] 332. Specifically, a microcontroller 342 located in the portable computer system 10 monitors for depression of the undock request button 186, which is located on the docking unit's right sidewall, see FIG. 1. When the depression of the undock request button 186 is detected, the microcontroller 342 communicates to the computer system's operating system to request the entrance of a password by the user. If the proper password is entered, the operating system 342 communicates this to the microcontroller 340, which signals, via an I2C bus, a latch 344 in the dock. The latch generates a pulse to a release BJT transistor 346, which activates on retracting MOSFET 348. Capacitor 350 controls the period of time the MOSFET is turned on. This operates the solenoid 332 to retract the arm 330. Successful retraction of the arm 330 is detected by switch 336.
[0041] If the latch [0041] 344 fails to detect the change in state of the arm 330 of the solenoid 332 via switch 336, the latch again issues a pulse to BJT 346 to try to attempt to retract the arm again. This continues until the arm 330 is successfully retracted.
[0042] A similar process is used to lock the portable computer system [0042] 10 on the dock 100. The microcontroller 340 functions as a docking detection system to detect the coupling of the computer's connector 14 to the combination detector 130 on the dock 100. When this event is detected, and an automatic locking state has been selected by the user in the operating system 342, the microcontroller 340 issues a signal to latch 344 to enter a locked state. The latch generates a pulse via a locking BJT transistor 354 which operates MOSFET 356 to extend the arm 330 of the solenoid 332. Capacitor 351 maintains the on state of MOSFET 356 for the time required for the solenoid to change states. Again, the successful movement of the solenoid arm 330 is detected by the feedback from the switch 336 to latch 344. The latch continues to attempt to extend the arm 330 until it is successful. Extension of the solenoid arm prevents the rotation of the locking element 314 shown in FIG. 6. This prevents the depression of buttons 136, 138 and thus the undocking of the portable computer 10 from the docking unit 100.
[0043] In additional embodiments, the portable computer comprises a middle docking unit such that the portable computer unit is latched to the middle docking unit and the middle docking unit is latched to the port replicator. For example, such middle docking units provide extended multimedia capabilities to the portable computer. This system allows all three sections to be secured to the work area with a single locking cable. [0043]
[0044] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described specifically herein. Such equivalents are intended to be encompassed in the scope of the claims. [0044]
权利要求:
Claims (20)
[1" id="US-20010005307-A1-CLM-00001] 1. A docking unit having a wedge-shape that inclines, towards a user, a keyboard of a portable computer, which has been installed on the docking unit.
[2" id="US-20010005307-A1-CLM-00002] 2. A docking unit as described in
claim 1 , wherein the docking unit is a port replicator.
[3" id="US-20010005307-A1-CLM-00003] 3. A docking unit as described in
claim 1 , wherein the docking unit comprises replicated port connectors which replicate communications ports of the portable computer enabling the portable computer to be disconnected from peripheral devices connected to replicated port connectors of the docking unit by disconnecting the portable computer from the docking unit.
[4" id="US-20010005307-A1-CLM-00004] 4. A docking unit as described in
claim 3 , further comprising replicated parallel port and serial port connectors which function as replicated parallel and serial ports of the portable computer.
[5" id="US-20010005307-A1-CLM-00005] 5. A docking unit as described in
claim 3 , further comprising a replicated mouse port connector, keyboard port connector, and video port connector which function as a replicated mouse port, keyboard port, and video port of the portable computer.
[6" id="US-20010005307-A1-CLM-00006] 6. A docking unit as described in
claim 1 , further comprising:
replicated port connectors which function as replicated ports of communications ports of a portable computer installed on the docking unit; and
a combination connector, the replicated port connectors interfacing with the communications ports of the portable computer via the combination connector.
[7" id="US-20010005307-A1-CLM-00007] 7. A docking unit as described in
claim 6 , wherein the combination connector of the docking unit mates with a compatible connector of the portable computer as the portable computer is installed on the docking unit.
[8" id="US-20010005307-A1-CLM-00008] 8. A docking unit as described in
claim 1 , wherein the docking unit prevents access to communications port connectors of the portable computer when the portable computer is installed on the docking unit.
[9" id="US-20010005307-A1-CLM-00009] 9. A docking unit as described in
claim 1 , wherein the docking unit comprises wall that projects in front of communications port connectors of the portable computer when installed on the docking unit to prevent direct access to the communications ports by a user.
[10" id="US-20010005307-A1-CLM-00010] 10. A docking unit as described in
claim 1 , wherein the docking unit comprises a battery charger for charging a battery of a portable computer that has been installed on the docking unit.
[11" id="US-20010005307-A1-CLM-00011] 11. A docking unit as described in
claim 10 , wherein the battery charger is located in a rear, thicker section of the docking unit.
[12" id="US-20010005307-A1-CLM-00012] 12. A method for docking a portable computer, the method comprising:
providing a wedge-cross-sectioned docking unit; and
installing the portable computer on the docking unit to thereby incline a keyboard of the portable computer towards a user.
[13" id="US-20010005307-A1-CLM-00013] 13. A method as described in
claim 12 , further comprising replicating communications ports of the portable computer on the docking unit.
[14" id="US-20010005307-A1-CLM-00014] 14. A method as described in
claim 12 , further comprising enabling the portable computer to be disconnected from peripheral devices connected communications ports of the portable computer via replicated port connectors on the docking unit by disconnecting the portable computer from the docking unit.
[15" id="US-20010005307-A1-CLM-00015] 15. A method as described in
claim 12 , further comprising replicating a parallel port and serial port of the portable computer at replicated port connectors on the docking unit.
[16" id="US-20010005307-A1-CLM-00016] 16. A method as described in
claim 12 , further comprising replicating a mouse port, keyboard port, and video port of the portable computer at replicated port connectors on the docking unit.
[17" id="US-20010005307-A1-CLM-00017] 17. A method as described in
claim 12 , further comprising connecting communications ports of the portable computer to replicated port connectors of the docking unit via a combination connector.
[18" id="US-20010005307-A1-CLM-00018] 18. A method as described in
claim 17 , further comprising mating the combination connector with a compatible connector of the portable computer as the portable computer is installed on the docking unit.
[19" id="US-20010005307-A1-CLM-00019] 19. A method as described in
claim 12 , further comprising preventing access to communications port connectors of the portable computer when the portable computer is installed on the docking unit.
[20" id="US-20010005307-A1-CLM-00020] 20. A method as described in
claim 12 , further comprising charging a battery of the portable computer.
类似技术:
公开号 | 公开日 | 专利标题
US6424524B2|2002-07-23|Wedge-shaped port replicator for portable computer
US6046571A|2000-04-04|Port replicator with secure integral battery charging cradle
US6151218A|2000-11-21|Physical security system for portable computer/port replicator
US6407914B1|2002-06-18|Docking system for portable computer
US5450271A|1995-09-12|Portable computer docking apparatus including a key mechanism controlling a power supply and a locking mechanism
US5995366A|1999-11-30|Computer anti-theft system and method
US6331934B1|2001-12-18|Computer docking station with anti-theft locking mechanisms for removable components
US5818691A|1998-10-06|Portable computer docking system with push to engage and push to disengage connection module
US6231371B1|2001-05-15|Docking station for multiple devices
US6297963B1|2001-10-02|Security docking cable for computer docking system
US6522532B2|2003-02-18|Cable docking system and method for a computer
US5579528A|1996-11-26|Computer system employing docking bay with spring loaded connector pins and file coherency method
US6135801A|2000-10-24|Computer underside docking method and apparatus
JP4071325B2|2008-04-02|Portable computer equipment
US10019035B2|2018-07-10|Tablet attachment system
US6549416B2|2003-04-15|Portable computer docking station with protected connector
US6185095B1|2001-02-06|Computer docking station with retractable release lever
US5526493A|1996-06-11|Docking detection and suspend circuit for portable computer/expansion chassis docking system
US7085132B2|2006-08-01|Vertically docking an information handling system to a media slice
US6731500B2|2004-05-04|Desktop computer appliance
US5948074A|1999-09-07|Expansion unit having a security mechanism for inhibiting attachment and disconnection of the expansion unit to and from a portable computer
US6980422B2|2005-12-27|Internal USB drive housing bay
EP0643348A1|1995-03-15|Combined notepad and notebook computer
US6072695A|2000-06-06|Horizontal loading docking station with uninterrupted power supply
US7079385B1|2006-07-18|Docking station lock and its link assembly
同族专利:
公开号 | 公开日
US6724623B2|2004-04-20|
US6424524B2|2002-07-23|
US20020181199A1|2002-12-05|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
EP1894279A2|2005-06-20|2008-03-05|Belkin International, Inc|Multi-standard connection hub and method of manufacturing same|
US20120176744A1|2011-01-06|2012-07-12|Fujitsu Limited|System and expansion apparatus|
US20170068272A1|2015-09-04|2017-03-09|Erik Jens Loscalzo|Laptop computer case with integrated file storage and batteries|
US10303214B2|2017-10-17|2019-05-28|Microsoft Technology Licensing, Llc|Docking mechanisms and methods of restraining two portions of a computing device|
US10331175B2|2015-10-05|2019-06-25|Microsoft Technology Licensing, Llc|Locking mechanism|US5460547A|1992-04-03|1995-10-24|Zenith Data Systems Corporation|Port replicator|
US5313596A|1993-01-05|1994-05-17|Dell Usa Lp|Motorized portable computer/expansion chassis docking system|
US5436792A|1993-09-10|1995-07-25|Compaq Computer Corporation|Pivotable docking station for use with notepad computer systems|
US5552957A|1994-09-09|1996-09-03|International Business Machines Corporation|Portable computer field kit|
US5555491A|1995-02-14|1996-09-10|Toshiba America Information Systems, Inc.|Compact docking station for portable computer|
US5933812A|1995-04-12|1999-08-03|Verifone Inc.|Portable transaction terminal system|
US5568359A|1995-05-24|1996-10-22|Dell Usa, L.P.|Portable computer desktop docking system|
JP3469699B2|1996-02-20|2003-11-25|インターナショナル・ビジネス・マシーンズ・コーポレーション|Docking device for portable computer|
US5864294A|1996-04-01|1999-01-26|Acer, Inc.|Method and device for expanding computer function|
US5859762A|1996-05-13|1999-01-12|International Business Machines Corporation|Docking station for portable computers|
US5694292A|1996-08-05|1997-12-02|Compaq Computer Corporation|Portable computer docking station with removable support shelf apparatus|
JPH1091282A|1996-09-10|1998-04-10|Canon Inc|Electronic equipment device|
JP3248712B2|1996-11-05|2002-01-21|富士通株式会社|Function expansion device for information processing device|
US5768101A|1996-12-20|1998-06-16|Compaq Computer Corporation|Portable computer docking base with ducted interior cooling air passsage|
US5745341A|1996-12-31|1998-04-28|Compaq Computer Corporation|Inclined docking base for a portable computer with a slidable monitor support member|
US5966285A|1997-06-06|1999-10-12|Compaq Computer Corporation|Mobile portable computer docking/office station|
US6101087A|1997-06-19|2000-08-08|Xplore Technologies, Inc.|Portable pen-based computer and auxiliary unit for use with a vehicular docking station|
US6556435B1|1997-10-31|2003-04-29|Hewlett-Packard Company|Adjustable height docking station and computing device for use therewith|
KR100315561B1|1998-01-13|2002-02-28|윤종용|Expansion apparatus|
US5938812A|1998-05-14|1999-08-17|Amorphous Materials, Inc.|Method for constructing a coherent imaging bundle|
US6028767A|1998-05-15|2000-02-22|Compal Electronics Inc.|Externally connected expansion device with replaceable guiding face panel for guiding different portable computers|
US6151218A|1998-08-21|2000-11-21|Compaq Computer Corporation|Physical security system for portable computer/port replicator|
US6046571A|1998-08-21|2000-04-04|Digital Equip Corp|Port replicator with secure integral battery charging cradle|JPH10198459A|1996-12-24|1998-07-31|Internatl Business Mach Corp <Ibm>|Docking device for portable computer|
US6148354A|1999-04-05|2000-11-14|M-Systems Flash Disk Pioneers Ltd.|Architecture for a universal serial bus-based PC flash disk|
US6697892B1|1999-07-08|2004-02-24|Intel Corporation|Port expansion system|
US6935661B1|2000-11-21|2005-08-30|Hewlett-Packard Development Company, L.P.|Access panel latching system|
TW562169U|2002-04-17|2003-11-11|Quanta Comp Inc|Expansion seat|
US20040131928A1|2002-09-17|2004-07-08|Tal Dayan|Modifying surfaces of devices to integrate them into wireless charging systems|
TW590264U|2003-06-09|2004-06-01|Tatung Co|Portable computer apparatus|
DE102004007740B4|2004-02-16|2014-02-13|Dspace Digital Signal Processing And Control Engineering Gmbh|Module board and separator bracket|
JP4485254B2|2004-05-14|2010-06-16|富士通株式会社|Circuit board and electronic device|
KR100745709B1|2004-06-28|2007-08-02|엘지전자 주식회사|An antitheft device for port replicator|
KR100703657B1|2004-06-28|2007-04-05|엘지전자 주식회사|A port replicator|
US7061757B2|2004-08-02|2006-06-13|Uniwill Computer Corp.|Port replicator for portable electronic devices|
TWM266676U|2004-10-29|2005-06-01|Lite On Technology Corp|Joining structure of hand-held electronic device and its back case|
US7200702B2|2005-02-18|2007-04-03|Microsoft Corporation|Mobile device expansion system|
GB2439706B|2005-05-04|2010-04-07|Acco Brands Usa Llc|A connector for a computer and a system comprising a connector|
TWI287425B|2005-08-16|2007-09-21|Quanta Comp Inc|Auto-extending replicator|
US20070124895A1|2005-11-22|2007-06-07|Brown Michael E|Cord management systems|
KR100810264B1|2006-07-20|2008-03-07|삼성전자주식회사|Portable terminal with locking release device|
US7558898B2|2006-08-30|2009-07-07|ACCO Brands Corporation|Port replicating apparatus|
CN101153525B|2006-09-30|2013-01-09|Ge医疗系统环球技术有限公司|Connecting/releasing mechanism and combination device|
GB2445977A|2007-01-26|2008-07-30|Clientron Corp|Thin client computer with peripheral port expansion module|
JP4815385B2|2007-04-13|2011-11-16|株式会社日立製作所|Storage device|
TW200907639A|2007-08-09|2009-02-16|Asustek Comp Inc|Docking station and expandable computer system|
CA2656431C|2008-02-27|2015-04-14|L&P Property Management Company|Computer docking station for a vehicle|
US7997914B2|2008-06-11|2011-08-16|Google Inc.|Push-to-insert, push-to-eject and pull-to-extract card connector|
US9200901B2|2008-06-19|2015-12-01|Microsoft Technology Licensing, Llc|Predictive services for devices supporting dynamic direction information|
US8199490B2|2009-01-31|2012-06-12|Eran Wilkenfeld|Electronic device support system|
US7976346B2|2009-03-06|2011-07-12|Cisco Technology, Inc.|Interface connection management using a removable adapter for communications equipment|
US8419479B2|2009-09-17|2013-04-16|Matthew Leigh Vroom|Docking station for an electronic device with improved electrical interface|
US9285831B2|2009-09-17|2016-03-15|Henge Docks Llc|Docking station for portable electronics|
US8649169B2|2010-11-23|2014-02-11|Infiniwing, Inc.|Systems and methods for securing mobile computing devices|
TWM416155U|2011-05-11|2011-11-11|Partner Tech Corp|Separable point of sale system|
US8659889B2|2011-05-20|2014-02-25|Apple Inc.|Docking station for providing digital signage|
TW201445278A|2013-05-20|2014-12-01|Hon Hai Prec Ind Co Ltd|Mobile power supply|
US9650814B2|2013-12-31|2017-05-16|Henge Docks Llc|Alignment and drive system for motorized horizontal docking station|
US9927838B2|2013-12-31|2018-03-27|Henge Docks Llc|Sensor system for docking station|
US9727084B2|2015-10-23|2017-08-08|Henge Docks Llc|Drivetrain for a motorized docking station|
US9811118B2|2015-10-23|2017-11-07|Henge Docks Llc|Secure assembly for a docking station|
US9575510B1|2015-10-23|2017-02-21|Matthew Leigh Vroom|Precision docking station for an electronic device having integrated retention mechanism|
US10365688B1|2018-04-19|2019-07-30|Henge Docks Llc|Alignment sleeve for docking station|
US10599182B1|2018-07-27|2020-03-24|The United States Of America As Represented By The Secretary Of The Navy|Docking station apparatus|
法律状态:
1998-10-30| AS| Assignment|Owner name: DIGITAL EQUIPMENT CORPORATION, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOVIO, MICHELE;BAUCOM, ALLAN SCOTT;REEL/FRAME:009559/0055 Effective date: 19981019 |
2001-11-16| AS| Assignment|Owner name: COMPAQ INFORMATION TECHNOLOGIES GROUP, L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIGITAL EQUIPMENT CORPORATION;COMPAQ COMPUTER CORPORATION;REEL/FRAME:012309/0718;SIGNING DATES FROM 19991209 TO 20010620 |
2006-01-23| FPAY| Fee payment|Year of fee payment: 4 |
2010-01-25| FPAY| Fee payment|Year of fee payment: 8 |
2011-09-15| AS| Assignment|Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:COMPAQ INFORMATION TECHNOLOGIES GROUP, L.P.;REEL/FRAME:026908/0651 Effective date: 20021001 |
2014-02-28| REMI| Maintenance fee reminder mailed|
2014-07-23| LAPS| Lapse for failure to pay maintenance fees|
2014-08-18| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
2014-09-09| FP| Expired due to failure to pay maintenance fee|Effective date: 20140723 |
优先权:
申请号 | 申请日 | 专利标题
US09/138,319|US6424524B2|1998-08-21|1998-08-21|Wedge-shaped port replicator for portable computer|US09/138,319| US6424524B2|1998-08-21|1998-08-21|Wedge-shaped port replicator for portable computer|
US10/201,105| US6724623B2|1998-08-21|2002-07-23|Wedge-shaped port replicator for portable computer|
[返回顶部]